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Abstract—Successive cancellation list (SCL) decoding of polar
codes can yield excellent performance in error correction with
the assistance of cyclic redundancy check (CRC) codes while its
complexity remains high. This paper proposes a hybrid decoding
for the CRC assisted polar codes, namely the CRC-polar codes.
The proposed mechanism integrates the Fano decoding and the
successive cancellation (SC) decoding. The Fano decoding will
be first deployed to recover the message. However, when the
received information is unreliable, it may stagger causing a
large latency. To overcome this, we introduce a Fano decoding
computation threshold. If a CRC validated estimation cannot be
provided within the threshold, the SC decoding will be further
deployed. As a result, both the decoding complexity and latency
can be contained. The threshold-performance tradeoff insight
of the hybrid decoding is also studied. Our simulation results
demonstrate that the proposed hybrid decoding outperforms the
SCL and the Fano decoding with a lower complexity.

Index Terms—Cyclic redundancy check, Fano decoding, polar
codes, successive cancellation list decoding.

I. INTRODUCTION

Polar codes [1] can be theoretically proved to achieve the

capacity of the binary input discrete memoryless channel

(BI-DMC). In practice, this is realized by the successive

cancellation (SC) decoding with a sub-quadratic complexity

of O(N log2N), where N is the codeword length. However, in

the finite length regime, the SC decoding performance remains

inferior to that of the maximum likelihood (ML) decoding. By

keeping multiple decoding paths, the SC list (SCL) decoding

[2] was proposed to approach the ML performance with a

complexity of O(LN log2N), where L is the list size. The

use of cyclic redundancy check (CRC) codes can significantly

enhance the SCL decoding performance [3]. This concate-

nation is often called the CRC-polar codes. The adaptive

SCL (ASCL) decoding [4] was later proposed to avoid the

unnecessary list expansion.

Projecting the SC decoding estimations over a binary tree,

Fano decoding of polar codes was proposed [5]. It finds the

correct decoding path over the decoding tree in a depth-

first-search manner. The use of CRC in Fano decoding has

also been considered. If a complete tree path cannot be

validated by the CRC, the unreliable bits will be identified and

flipped, triggering the subsequent decoding. However, when

the received information is unreliable, the Fano decoding may

stagger over the tree, causing in a large latency.

Addressing the above challenges, this paper proposes a

hybrid message recovery mechanism that integrates the Fano

decoding and the SC decoding, so that high performance

of the CRC-polar codes can be achieved with a moderate

cost of complexity and latency. The Fano decoding will be

first invoked. To prevent it from lingering over the decoding

tree, a decoding computation threshold is introduced. If the

decoding cannot deliver a CRC validated codeword within

the threshold, the SC decoding will be further invoked to

find a complete path over the tree. The decoding threshold-

performance tradeoff will be studied. Our simulation results

will show that the hybrid decoding can outperform the SCL

and the Fano decoding with a much lower complexity.

II. CRC-POLAR CODES

A. Channel Polarization

Given a BI-DMC W: X → Y , where X = {0, 1} is the

input alphabet and Y ∈ R is the arbitrary output alphabet. Let

C(W) denote the capacity of channel W. Channel polarization

can be explained by channel combing and splitting. The

former combines N identical channels recursively into a vector

channel WN : XN → YN , where N = 2n and n ∈ N. The

latter splits the vector channel into N sub-channels W
(i)
N :

X → YN × X i−1, where 1 ≤ i ≤ N . Let C(WN ) and

C(W
(i)
N ) denote the capacity of the vector channel and the

sub-channel i, respectively. They satisfy [1]

C(WN ) = NC(W) =
N∑
i=1

C(W
(i)
N ). (1)

Let [j] denote a permutation of {1, 2, . . . , N}. Channel polar-

ization leads to C(W
[1]
N ) ≤ C(W

[2]
N ) ≤ · · · ≤ C(W

[N ]
N ). Part

of the N sub-channels become noisy as C(W
(i)
N ) → 0, while

the other part become noiseless as C(W
(i)
N ) → 1. As N → ∞,

the above polarized portions become more significant. Let P
(i)
e

denote the transmission error probability over sub-channel

W
(i)
N . Both C(W

(i)
N ) and P

(i)
e can be estimated via density

evolution with a Gaussian approximation (GA) [6]. The N
sub-channels can therefore be partitioned into the information

set A and the frozen set Ac. A collects the indices of

the sub-channels with a large capacity, while Ac collects

the remaining sub-channel indices. Information symbols and

the redundancy (known as frozen symbols in polar coding

language) will be transmitted through the sub-channels of A
and Ac, respectively.

Let F2 denote the binary field. The generator matrix of a

length-N polar code is obtained by

G = BF⊗n, (2)

where B ∈ F
N×N
2 is a bit-reversal permutation matrix [1],

F = ((1, 0), (1, 1))T ∈ F
2×2
2 , and F⊗n is an n-th Kronecker

power of F.
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B. CRC-Polar Codes

Given a length-N vector v = (v1, v2, . . . , vN ) ∈ F
N
2 , we

use vi2i1 to denote its subvector (vi1 , vi1+1, . . . , vi2), where 1 ≤
i1 < i2 ≤ N . Hence, v can also be denoted as vN1 . For an

(N,K) CRC-polar code with a length-K1 CRC, its inner code

is an (N,K+K1) polar code and outer code is a (K+K1,K)
CRC code. Given a message mK

1 = (m1,m2, . . . ,mK) ∈ F
K
2 ,

it can be written as m(x) = m1+m2x+ · · ·+mKxK−1, the

CRC codeword sK+K1
1 ∈ F

K+K1
2 is generated by

s(x) = xK1 ·m(x) + (xK1 ·m(x)) mod g(x), (3)

where s(x) = s1 + s2x+ · · ·+ sK+K1
xK+K1−1 and g(x) is

the CRC generator polynomial. Let uN
1 ∈ F

N
2 and cN1 ∈ F

N
2

denote information and codeword vectors of a CRC-polar

code, respectively. Symbols of sK+K1
1 will be placed in uN

1

at the positions indexed by A and |A| = K + K1. The

rest positions of uN
1 (indexed by Ac) are filled with frozen

symbols. In this paper, we let the frozen symbols to be zero.

The CRC-polar code can be generated by

cN1 = uN
1 G = uN

1 BF⊗n. (4)

III. THE SC AND FANO DECODING

A. The SC Decoding

It is assumed that codeword cN1 is transmitted using binary

modulation. Let yN
1

= (y1, y2, . . . , yN ) ∈ R
N and ûN

1 =

(û1, û2, . . . , ûN ) ∈ F
N
2 denote the received symbol vector and

the estimated message, respectively. If ui is a frozen symbol,

i.e., i ∈ Ac, then ûi = 0. Otherwise, its log likelihood ratio

(LLR) will be computed as

L
(i)
N (yN

1
, ûi−1

1 ) = ln
P (yN

1
, ûi−1

1 |ui = 0)

P (yN
1
, ûi−1

1 |ui = 1)
, (5)

where P (yN
1
, ûi−1

1 |ui) is the conditional channel transition

probability. The above LLR can be recursively calculated

Fig. 1. The SC decoding trellis with N = 4. The dashed and solid arrows
denote f+ and f− updates, respectively.

through a trellis that is shown in Fig.1. At each layer, L
(i)
N

denotes the LLR of symbol ui of a length-N polar code. They

can be calculated using those of two length-N/2 subcodes,

which can be seen as the splitting results. Therefore, given a

length-N polar code, after splitting log2N times, N symbols

will be reached. Their LLRs can be determined by

L
(1)
1 (yi) = ln

P (yi|u1 = 0)

P (yi|u1 = 1)
, (6)

where 1 ≤ i ≤ N . Let us define

f+(α, β) � ln
eα+β + 1

eα + eβ
, (7)

f−(α, β, ξ) � (−1)ξα+ β. (8)

where α, β ∈ R and ξ ∈ F2. The LLRs over the trellis can be

recursively computed in a layer-by-layer manner as [7]

L
(2i−1)
N (yN

1
, û2i−2

1 ) = f+(L
(i)
N/2(y

N/2
1

, û2i−2
1,o ⊕ û2i−2

1,e ),

L
(i)
N/2(y

N
N/2+1

, û2i−2
1,e )), (9)

L
(2i)
N (yN

1
, û2i−1

1 ) = f−(L
(i)
N/2(y

N/2
1

, û2i−2
1,o ⊕ û2i−2

1,e ),

L
(i)
N/2(y

N
N/2+1

, û2i−2
1,e ), û2i−1), (10)

where û2i−2
1,o and û2i−2

1,e are the odd and the even entries of

û2i−2
1 , respectively. Finally, decision on the message symbols

will be made based on L
(i)
N (yN

1
, ûi−1

1 ). That says for i ∈ A,

if L
(i)
N (yN

1
, ûi−1

1 ) > 0, ûi = 0; otherwise, ûi = 1.

B. The Fano Decoding

It is assumed that ui (i ∈ A) is uniformly distributed in

X . The a posteriori probability (APP) P (ui|yN1 , ûi−1
1 ) can be

determined by

P (ui|yN1 , ûi−1
1 )=

⎛
⎝1+

(
P (yN

1
, ûi−1

1 |ui = 0)

P (yN
1
, ûi−1

1 |ui = 1)

)(−1−2ui)
⎞
⎠

−1

.

(11)

The above SC decoding estimation can be projected over a

binary decoding tree as Fig.2. Nodes of each layer denote the

APPs of (11), while the branch leading to a node denotes

the decision on the prior estimated symbol, i.e., ûi−1. The

binary tree that illustrates the decoding of a length-N polar

code has N + 1 layers. At layer i (i ∈ A), the branch that

leads to a larger APP will be chosen. A complete root-to-leaf

path corresponds to an SC decoding estimation. Fig.2 shows

the estimated message is û4
1 = (0, 1, 1, 0), which is incorrect.

This can be improved by revising the APPs.

0

1
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0 1

1

1

0.21 0.79

0.44 0.56

0.89 0.11

0

0
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0 1
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1

0 1

0 1

0

0 1

0 1

0 10 1

 Visited nodes
 Unvisited nodes 
 Visited nodes
 Unvisited nodes 

Fig. 2. Binary tree illustration of the SC decoding with N = 4, A =
{2, 3, 4}, Ac = {1} and u4

1 = (0, 1, 0, 1).

Accumulating all APPs of a path from û1 to ûi results in

i∏
t=1

max
ut∈F2

{P (ut|yN1 , ût−1
1 )}, (12)

which indicates the reliability of the estimation. This path reli-

ability metric is upper bounded by the maximum a posteriori
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probability (MAP) decoding metric as

i∏
t=1

max
ut∈F2

{P (ut|yN1 , ût−1
1 )} ≤ max

ui
1∈F

i
2

{
i∏

t=1

P (ut|yN1 , ût−1
1 )}.

(13)

Further assuming the codeword symbols are independent, the

above upper bound can be approximated by

max
ui
1∈F

i
2

{
i∏

t=1

P (ut|yN1 , ût−1
1 )} ≈

i∏
t=1

(1− P (t)
e ), (14)

where P
(i)
e is the transmission error probability. This approx-

imation can be used to tune the accumulated path metric of

(12). In the LLR domain, they can be written as

M(ûi
1) = ln

(
i∏

t=1

P (ut|yN1 , ût−1
1 )

1− P
(t)
e

)

=
i∑

t=1

ln

(
P (ut|yN1 , ût−1

1 )

1− P
(t)
e

)

= M(ûi−1
1 ) + ln

(
P (ui|yN1 , ûi−1

1 )

1− P
(i)
e

)
, (15)

with an initial value M(û0
1) = 0. Over the binary tree,

M(ûi−1
1 ) and M(ûi

1) are the path metrics of the nodes at

layer i − 1 and i, respectively. They have two realizations.

E.g., the accumulated path metric M(ûi
1) can be realized

as M(ûi
1|ûi = 0) and M(ûi

1|ûi = 1), which correspond

to the path taking the left and the right branches from the

node at layer i− 1, respectively. A larger accumulated metric

of M(ûi
1) indicates the path that yields ûi

1 would be more

reliable. The decoding finds a complete path, yielding ûN
1 ,

in the manner of pursuing a larger accumulated metric. In

practice, an accumulated metric threshold T is used to prevent

the decoding from exploring too many paths. Only the paths

with an accumulated metric greater than T will be considered.

Note that T will be dynamically adjusted with a step size Δ,

so that the decoding always yields a complete path.

Fig.3 demonstrates the Fano decoding with the threshold

initialized as T = −4 and Δ = 4. Note that at layer i, if

max
ûi∈F2

{M(ûi
1)} ≥ T, (16)

the node with a greater accumulated path metric will be

explored. However, if

max
ûi∈F2

{M(ûi
1)} < T, (17)

the decoding path will move back to a nearest visited node

which has a path metric

min
ûi′∈F2

{M(ûi′
1 )} ≥ T, (18)

where i′ < i, and the two branches that stretch from the

node have not been fully explored. Afterwards, the decoding

will explore a new path from the node. A node update

according to the above rules is called an iteration of the
Fano decoding. Once the decoding yields a complete path, a

codeword estimation ûN
1 will be provided. Fig.3 shows that

with the same decoding task of Fig.2, the Fano decoding

provides the correct estimation.
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Fig. 3. Binary tree illustration of the Fano decoding with N = 4, A =
{2, 3, 4}, Ac = {1} and u4

1 = (0, 1, 0, 1).

It should be pointed out that if the step size Δ = ∞,

Fano decoding dissolves into the SC decoding. However, if

Δ is too small, the Fano decoding may stagger, lingering

over the binary tree without providing a complete path. This

often happens when the received information is unreliable. To

overcome this, the following hybrid decoding is proposed.

IV. THE HYBRID DECODING

A. The Fano-SC Integration

Fano Dec.  <Φ  ? Leaf Node? CRC Val.

SC Dec.

Yes

Yes Yes

No

NoNo

yN
1

K
1û m

Fig. 4. Block diagram of the hybrid decoding.

Fig.4 shows the block diagram of the hybrid decoding.

It integrates the above mentioned Fano decoding and SC

decoding. The Fano decoding will be first deployed to recover

the message. To prevent it from lingering over the binary tree,

a decoding LLR computation threshold will be imposed, where

the LLR computation is defined as the recursive operations

of (9) and (10). In this work, the threshold is defined as a

multiplicity of the SC decoding complexity, i.e.,

Φ = ηN log2N, (19)

where η is a positive integer. Once the number of LLR com-

putations, denoted as φ, reaches Φ, and the Fano decoding still

cannot deliver a CRC validated estimation, the SC decoding

will be deployed. In particular, once φ reaches Φ and the Fano

decoding has estimated ûi−1
1 , the SC decoding will recover

the remaining ûN
i . The estimated message m̂K

1 can be further

obtained. The following Algorithm 1 demonstrates the hybrid

decoding process.

B. Decoding Insight

The above description shows that a larger LLR computation

threshold Φ can lead to more Fano decoding efforts and a

better decoding performance. We now study the threshold-

performance relationship, aiming to provide more insight of

the hybrid decoding.
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Algorithm 1 The Hybrid Decoding.

Input: yN
1

, Φ, Δ, T ;

Output: m̂K
1 ;

1: Initialize φ = 0 and i = 1;

2: If φ < Φ do
3: Compute M(ûi

1) as in (15) and update φ;

4: Perform an iteration of the Fano decoding;

5: Estimate ûi′ with i′ ≤ i and let i = i′ + 1;

6: If i = N + 1 do
7: Retrieve m̂K

1 from ûN
1 ;

8: If the CRC validates m̂K
1 do

9: Terminate the decoding;

10: Else
11: Let i = N − 1 and go to 3;

12: Else
13: Compute L

(i)
N (yN

1
, ûi−1

1 ) as in (5) and update φ;

14: Estimate ûi and let i = i+ 1;

15: Retrieve m̂K
1 from ûN

1 and terminate the decoding;

It is known that the decoding computation distribution of

the sequential decoding (e.g., the Fano decoding) follows the

Pareto distribution [8]. However, a closed form distribution for

CRC-polar codes is yet to be developed. Instead, we provide

the empirical results to reveal the computation distribution for

Fano decoding of CRC-polar codes.

Let ψ denote the number of LLR computations required by

the Fano decoding for delivering a CRC validated estimation.

It can be normalized by the SC decoding complexity as

ψ̃ =
⌊ ψ

N log2N

⌋
. (20)

 
0 1 2 3 4 5 6 7 8 9 10 

0 

0.1 

0.2 
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Fig. 5. The pmf of ψ̃ in decoding the length-128 CRC-polar code.

Fig. 5 shows the probability mass function (pmf) of ψ̃
for different rate CRC-polar codes. They are obtained over

the additive white Gaussian noise (AWGN) channel with the

signal-to-noise ratio (SNR) of 2.5 dB, 3 dB and 3.5 dB,

respectively. It shows that with the same SNR, Fano decoding

of a higher rate code is more likely to yield a CRC validated

message with a lower decoding complexity. Meanwhile, for the

same code, i.e., the (128, 64) CRC-polar code, less decoding

computation would be needed if the SNR increases.

Given a decoding computation threshold Φ of (19), it can

be normalized to η. Let PF(ψ̃ < η) denote the probability

that a CRC validated message can be provided with less than

TABLE I
COMPLEXITY Eη [φ] IN DECODING THE (128, 64) CRC-POLAR CODE

η 1 4 16 64

SNR = 1 dB 1.73× 103 4.10× 103 1.12× 104 2.79× 104

SNR = 2 dB 1.56× 103 3.22× 103 5.52× 103 9.04× 103

SNR = 3 dB 1.32× 103 2.08× 103 2.41× 103 2.57× 103

ηN log2N LLR computations. The average number of LLR

computations of this hybrid decoding can be characterized as

Eη[φ] =

η−1∑
ψ̃=1

PF(ψ̃ < η)ψ̃N log2N

+ (1−
η−1∑
ψ̃=1

PF(ψ̃ < η))ηN log2N. (21)

In the worst case, no CRC validated message can be yielded

within the threshold, Eη[φ] = ηN log2N . Table I shows for the

(128, 64) CRC-polar code, how the average LLR computations

Eη[φ] varies w.r.t. the threshold η and the AWGN channel

condition. It can be seen that a larger computation threshold

results in a higher average LLR computations. The average

LLR computations decrease as the SNR increases.

0 5 10 15 20 25 30 35 40 45
10-5

10-4

10-3

10-2

10-1

FE
R

Fig. 6. The performance-threshold relationship.

Finally, Fig.6 shows the relationship between the decoding

frame error rate (FER) and the computation threshold η for the

(128, 64) CRC-polar code. It is simulated over the AWGN

channel with SNR = 4 dB. It shows that better decoding

performance can be obtained by increasing the computation

threshold. For this code, if a decoding FER of 10−4 is targeted,

a decoding threshold η of at least 20 would be needed.

V. SIMULATION RESULTS

Our simulation results on decoding and complexity perfor-

mances were obtained over the AWGN channel using BPSK.

A length-8 CRC code with generator polynomial g(x) =
x8+x2+x+1 is used. The polar codes were designed using

GA at the SNR of 0 dB.

A. Decoding Performance

Figs. 7 and 8 show the FER performance of the (128,

64) and the (256, 128) CRC-polar codes, respectively. Note

that the SC and Fano decoding of polar codes of the same

rate are used as comparison benchmarks. It can be seen that

performance of the hybrid decoding can be improved by

increasing the LLR computation threshold η. For the (128,

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 30,2021 at 02:41:56 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 7. Performance of the (128, 64) CRC-polar code.
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Hybrid (  = 256,  = 1)
Hybrid (  = 1024,  = 1)

Fig. 8. Performance of the (256, 128) CRC-polar code.

64) CRC-polar code, when η = 16, the hybrid decoding can

substantially outperform both the SC and the Fano decoding.

When η = 64, it starts to outperform the SCL decoding

with L = 16. A similar phenomenon can be observed for

the (256, 128) CRC-polar code. It should be pointed out that

the hybrid decoding exhibits a far smaller complexity than

the SCL decoding, especially when the SNR increases, as

demonstrated below.

B. Decoding Complexity

3 3.5 4 4.5 5 5.5 6
SNR (dB)

0

2

4

6

8

10
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16

N
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m
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Hybrid (  = 4,  = 1)
Hybrid (  = 16,  = 1)
Hybrid (  = 64,  = 1)
Hybrid (  = 256,  = 1)

Fig. 9. Normalized complexity in decoding the (128, 64) CRC-polar code.

Complexity of all decoding algorithms are normalized by

a factor of N log2N . For the proposed hybrid decoding, it is

φ/N log2N . Figs. 9 and 10 show the normalized complexity in

decoding the (128, 64) and the (256, 128) CRC-polar codes,

respectively. It can be seen that a larger LLR computation

threshold results in a higher decoding complexity. But they

converge as the SNR increases. For the (128, 64) CRC-polar

code, Fig. 7 shows the hybrid decoding with η = 64 starts

Fig. 10. Normalized complexity in decoding the (256, 128) CRC-polar code.

to outperform the SCL decoding with L = 16. Fig. 9 shows

that over the interested SNR region (3 - 6 dB for the code),

the proposal exhibits a far lower complexity than the SCL

decoding. For the (256, 128) CRC-polar code, the interested

SNR region is 2 - 5 dB, in which Fig. 10 shows the complexity

advantage of the hybrid decoding with η = 1024 over the

SCL decoding with L = 16 starts to appear with an SNR

of 2.5 dB. Moreover, Fig. 8 shows the hybrid decoding with

η = 16 outperforms the Fano decoding, while Fig. 10 shows

the former has a lower complexity.

Since the SCL decoding can be processed in parallel, it has

a lower average latency than the hybrid decoding. But this

advantage will decrease rapidly as SNR increases.

VI. CONCLUSION

This paper has proposed a hybrid decoding for CRC-polar

codes, realizing a high decoding performance with a moderate

complexity and a contained latency. It integrates the Fano

decoding and the SC decoding. If the Fano decoding cannot

deliver a CRC validated estimation within an LLR compu-

tation threshold, the SC decoding will be further deployed.

Insight of the hybrid decoding has also been studied, revealing

its threshold-performance tradeoff. Simulation results have

shown that the hybrid decoding can outperform the SCL and

the Fano decoding with a lower complexity.
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